Norges Teknisk-naturvitenskapelige Universitet Directional Metropolis–hastings Updates for Posteriors with Nonlinear Likelihoods Directional Metropolis–hastings Updates for Posteriors with Nonlinear Likelihoods
نویسندگان
چکیده
In this paper we consider spatial problems modeled by a Gaussian random field prior density and a nonlinear likelihood function linking the hidden variables to the observed data. We define a directional block Metropolis–Hastings algorithm to explore the posterior density. The method is applied to seismic data from the North Sea. Based on our results we believe it is important to assess the actual posterior in order to understand possible shortcomings of linear approximations.
منابع مشابه
Norges Teknisk-naturvitenskapelige Universitet Control Variates for the Metropolis-hastings Algorithm Control Variates for the Metropolis-hastings Algorithm
We propose new control variates for variance reduction in the Metropolis–Hastings algorithm. We use variates that are functions of both the current state of the Markov chain and the proposed new state. This enable us to specify control variates which have known mean values for general target and proposal distributions. We develop the ideas for both the standard Metropolis–Hastings algorithm and...
متن کاملDirectional Metropolis–Hastings algorithms on hyperplanes
In this paper we define and study new directional Metropolis–Hastings algorithms that propose states in hyperplanes. Each iteration in directional Metropolis–Hastings algorithms consist of three steps. First a direction is sampled by an auxiliary variable. Then a potential new state is proposed in the subspace defined by this direction and the current state. Lastly, the potential new state is a...
متن کاملConvergence of Conditional Metropolis-Hastings Samplers, with an Application to Inference for Discretely-Observed Diffusions
We consider Markov chain Monte Carlo algorithms which combine Gibbs updates with Metropolis-Hastings updates, resulting in a conditional Metropolis-Hastings sampler. We develop conditions under which this sampler will be geometrically or uniformly ergodic. We apply our results to an algorithm for drawing Bayesian inferences about the entire sample path of a diffusion process, based only upon di...
متن کاملConvergence of Conditional Metropolis-Hastings Samplers
We consider Markov chain Monte Carlo algorithms which combine Gibbs updates with Metropolis-Hastings updates, resulting in a conditional Metropolis-Hastings sampler (CMH). We develop conditions under which the CMH will be geometrically or uniformly ergodic. We illustrate our results by analysing a CMH used for drawing Bayesian inferences about the entire sample path of a diffusion process, base...
متن کاملOn directional Metropolis-Hastings algorithms
Metropolis–Hastings algorithms are used to simulate Markov chains with limiting distribution equal to a specified target distribution. The current paper studies target densities on R. In directional Metropolis–Hastings algorithms each iteration consists of three steps i) generate a line by sampling an auxiliary variable, ii) propose a new state along the line, and iii) accept/reject according t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004